# Blackjack tables for beginners and experts

Apart from card counting, blackjack tables are known methods to successfully play against the blackjack dealer. The following table exists from 1958 and was developed from the analysis of numerous blackjack games.

The table has a simple design. First, of course you should contact the rules of the game apart. If you have internalized this is the table actually self-explained:

### TOP 3 BLACKJACK CASINOS

Table for Black Jack

## Black Jack Table as PDF

### The abbreviations again at a glance:

- D = doubles
- H = Hold
- Z = Pull
- S = Split
- S | Z = Split if allowed to double is - pull otherwise
- A | Z = abandonment, if allowed - otherwise draw

## Base table

The table shown above is one of the classics and to help you to make decisions in certain situations. It is of course not a panacea and will now bring automatic high profits. However, it is a good help, and on average could also bring you a higher chance of winning.

Simply put, this base table explains when you should do certain things in blackjack. It shows you when it could be better to "hold", "drawing", "doubles" or " splitting ".

In a game at the online casino you can put the table comfortably next to your computer. If you want to play blackjack in a real casino, then you should memorize them, as you may have problems with the casino staff otherwise.

## Expert's tables and profit expectations at blackjack

### Mathematical analysis and probability of blackjack

In the blackjack game, there seems to be a symmetric game, which promises a slight advantage for the player, as the bank will follow a fixed strategy in the game. On the other hand you have to try the possibility of different strategies in the game.

### The Bank's strategy

The bank will always follow the same strategy. This looks as follows: The bank can always reach 17 points or Blackjack. It therefore always draw another card up to 16 points.

The probabilities of these strategies in output as follows:

Bank | Probability |
---|---|

22 or more | 0,2816 |

Black Jack | 0,0473 |

21 | 0,0727 |

20 | 0,1803 |

19 | 0,1335 |

18 | 0,1395 |

17 | 0,1451 |

The probability higher than 22 at the bank seems to be a high advantage to the player at first glance, but this is again reduced by the fact that the bank wins when both are over 21.

### What would happen if you copied the Bank strategy?

If one were to look at the strategy mathematically, one comes to the conclusion that one loses 5.68% of its use on average. We will not show the mathematical explanation in more detail because it is very complex. In short, it is unadvisable to follow the Bank's strategy.

### Which blackjack strategy would now be advisable?

There is a strategy due after the first bank card. Here you can, for example, following tables advantage make:

### Probability of bank earnings by the first card:

1. card | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ass |
---|---|---|---|---|---|---|---|---|---|---|

sold | 0,353 | 0,373 | 0,395 | 0,416 | 0,423 | 0,262 | 0,245 | 0,228 | 0,212 | 0,1152 |

BJ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,077 | 0,308 |

21 | 0,118 | 0,115 | 0,111 | 0,108 | 0,097 | 0,074 | 0,069 | 0,061 | 0,035 | 0,054 |

20 | 0,124 | 0,12 | 0,117 | 0,113 | 0,102 | 0,079 | 0,069 | 0,12 | 0,342 | 0,131 |

19 | 0,13 | 0,126 | 0,121 | 0,118 | 0,106 | 0,079 | 0,129 | 0,351 | 0,111 | 0,131 |

18 | 0,135 | 0,131 | 0,16 | 0,122 | 0,106 | 0,138 | 0,359 | 0,12 | 0,111 | 0,131 |

17 | 0,14 | 0,135 | 0,131 | 0,122 | 0,165 | 0,369 | 0,129 | 0,12 | 0,111 | 0,131 |

The probabilities can best be explained by the BJ the bank. If this does not create 10 or ace is the probability on the blackjack 0

### The player's profit expectations through the first bank card

2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ass | |
---|---|---|---|---|---|---|---|---|---|---|

BJ | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | 1,385 | 1,039 |

21 | 0,882 | 0,884 | 0,889 | 0,892 | 0,903 | 0,926 | 0,931 | 0,939 | 0,812 | 0,331 |

20 | 0,64 | 0,65 | 0,661 | 0,67 | 0,704 | 0,773 | 0,792 | 0,758 | 0,435 | 0,146 |

19 | 0,386 | 0,404 | 0,423 | 0,44 | 0,496 | 0,616 | 0,594 | 0,288 | -0,019 | -0,116 |

18 | 0,122 | 0,148 | 0,176 | 0,2 | 0,283 | 0,4 | 0,106 | -0,183 | -0,242 | -0,377 |

17 | -0,153 | -0,117 | -0,081 | -0,045 | 0,012 | -0,107 | -0,382 | -0,423 | -0,464 | -0,639 |

to 16 | -0,293 | -0,252 | -0,211 | -0,167 | -0,154 | -0,475 | -0,511 | -0,543 | -0,576 | -0,769 |

The left column shows the profit expectations on the points of the player. The top line shows the first card.

### Example:

The player has for example scored a blackjack and now has a profit forecast of 1.5 times its use if the bank a 2-9 becomes the first card (a bj is no longer possible ). If the bank now draws a 10 or an Ace changes according to the expectation of winning, as the bank could draw level with a BJ and you would lose.

Based on the above tables you can now deduce whether it is advisable to take another card or not.

## The optimal drawing strategy in blackjack

2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ass | |
---|---|---|---|---|---|---|---|---|---|---|

17 | -0,153 | -0,117 | -0,081 | -0,045 | 0,012 | -0,107 | -0,382 | -0,423 | -0,464 | -0,639 |

16 | -0,293 | -0,252 | -0,211 | -0,167 | -0,154 | -0,415 | -0,458 | -0,509 | -0,575 | -0,666 |

15 | -0,293 | -0,252 | -0,211 | -0,167 | -0,154 | -0,37 | -0,417 | -0,472 | -0,543 | -0,64 |

14 | -0,293 | -0,252 | -0,211 | -0,167 | -0,154 | -0,321 | -0,372 | -0,431 | -0,507 | -0,612 |

13 | -0,293 | -0,252 | -0,211 | -0,167 | -0,154 | -0,269 | -0,324 | -0,387 | -0,47 | -0,583 |

12 | -0,253 | -0,234 | -0,211 | -0,167 | -0,154 | -0,213 | -0,272 | -0,34 | -0,429 | -0,55 |

11 | 0,238 | 0,26 | 0,283 | 0,307 | 0,334 | 0,292 | 0,23 | 0,158 | 0,033 | 0,209 |

10 | 0,183 | 0,206 | 0,231 | 0,256 | 0,288 | 0,257 | 0,198 | 0,117 | -0,054 | -0,251 |

9 | 0,074 | 0,101 | 0,129 | 0,158 | 0,196 | 0,172 | 0,098 | -0,052 | -0,218 | -0,353 |

8 | -0,022 | 0,008 | 0,039 | 0,071 | 0,115 | 0,082 | -0,06 | -0,21 | -0,307 | -0,444 |

7 | -0,109 | -0,077 | -0,043 | -0,007 | 0,029 | -0,069 | -0,211 | -0,285 | -0,371 | -0,522 |

6 | -0,141 | -0,107 | -0,072 | -0,035 | -0,013 | -0,152 | -0,217 | -0,293 | -0,389 | -0,518 |

5 | -0,128 | -0,095 | -0,062 | -0,024 | -0,001 | -0,229 | -0,188 | -0,267 | -0,366 | -0,501 |

4 | -0,115 | -0,083 | -0,049 | -0,012 | 0,011 | -0,088 | -0,159 | -0,241 | -0,344 | -0,483 |

Explanation: The left column is your player value after 2 cards. The upper line is the value of the first bank card.

From this table, one can derive a defensive strategy. The bank cards two or three should consider one more card in the game only to twelve.

With a 4.5, or 6 should not draw more cards from value 12.

In a 7,8,9,10 or an ace of the bank, it is best to draw a card to 16.

## Game strategy with Soft Hand Blackjack variant

In the soft hand blackjack game variation there is the possibility to evaluate the ace as 1 if you should score over 21 points. This of course has an advantage for the player and allows a more offensive version of the game.

### Profit expectations in soft hand blackjack due to bank card

2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ass | |
---|---|---|---|---|---|---|---|---|---|---|

19s | 0,386 | 0,404 | 0,423 | 0,44 | 0,496 | 0,616 | 0,594 | 0,288 | -0,019 | -0,116 |

18s | 0,122 | 0,148 | 0,176 | 0,2 | 0,283 | 0,4 | 0,106 | -0,101 | -0,21 | -0,372 |

17s | -0,001 | 0,029 | 0,059 | 0,091 | 0,128 | 0,054 | -0,073 | -0,15 | -0,259 | -0,423 |

16s | -0,021 | 0,009 | 0,04 | 0,073 | 0,099 | -0,005 | -0,067 | -0,149 | -0,268 | -0,422 |

15s | -0,001 | 0,029 | 0,059 | 0,092 | 0,118 | 0,037 | -0,027 | -0,112 | -0,237 | -0,398 |

14s | 0,022 | 0,051 | 0,08 | 0,112 | 0,139 | 0,08 | 0,013 | -0,075 | -0,206 | -0,373 |

13s | 0,047 | 0,074 | 0,103 | 0,133 | 0,162 | 0,122 | 0,054 | -0,038 | -0,174 | -0,347 |

12s | 0,082 | 0,104 | 0,127 | 0,157 | 0,186 | 0,166 | 0,095 | 0,001 | -0,142 | -0,322 |

Explanation: The left column is your player value after 2 cards. The upper line is the value of the first bank card.

Using the chart above, you can now derive the following: Do you have a soft hand 17 points and the bank draws a 2 as the first card, then you should take another card, because if by chanceit is an ace, in this case only a point will be counted. You would thus be expected significantly less loss (-0.001) than if you stay with your hand, as you would take a loss of -0.153 ( -15.3 %) in purchase (see Table optimum pull strategy).

Compare thus be able to derive this table with our table "The optimal drawing strategy in Blackjack" by pulling the optimal strategy for soft hand games. If the expectancy of the soft hand table higher than in the other table, then they should still draw a card.

### Absolute profit expectations in blackjack at optimum pull strategy due to the first Bank card

Bank | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ass | Cpl. |
---|---|---|---|---|---|---|---|---|---|---|---|

Exp. | 0,066 | 0,094 | 0,122 | 0,153 | 0,183 | 0,122 | 0,044 | -0,48 | -0,178 | -0,339 | -0,024 |

What can you derive from the following? In a 2-8 the bank, the player probably. From a 9 probably not. On the whole, the odds are negative. However, one can improve this by dividing or doubling still. An insurance at blackjack worthwhile generally NOT said.

Please note: These tables give only the mathematical probabilities again - Blackjack is and remains a gamble. By following the instructions can only increase your chances of winning - NOT GUARANTEE!